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The instability behavior of a parametrically excited column subjected to a
periodic load at any axial position in the direction of the tangency coefficient was
investigated analytically. For an inextensional neutral axis, the lateral and axial
deflections of the column can be expressed as functions of natural mode shapes
and the corresponding mode deflections of the column. The components of modal
excitation force induced by the periodic load were found as well. The dynamic
equation of the system was obtained by incorporating the modal excitation forces
and the modal equations of the free transverse vibration of the column into the
virtual work equation. The instability bandwidth of simple and combination
resonances of a general column can be described systematically by the natural
frequencies of the column, the amplitude of the excitation force and a set of
instability bandwidth parameters. A general formula was obtained to determine
directly the instability regions of the column system, while bypassing the
procedures for reducing and solving the dynamic equation of the system.

Physical explanations are given for the behavior of simple and combination
resonances. Examples for columns with various boundary conditions were
described to indicate their instability regions and were found to agree quite well
with the results by previous researchers.
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1. INTRODUCTION

Parametrically excited instability of an elastic system is very important for
dynamic problems. It has attracted a great amount of attention recently. Some
researchers [1–3] used the perturbation method to solve various parametrically
excited systems with multiple degrees of freedom. The problem of parametric
instability of columns and beams can be roughly grouped, according to the method
of excitation, into two categories.

The first category is the instability problem of columns or beams subjected to
given periodic axial motion. Handoo and Sundararajan [4] studied analytically and
experimentally the stability of cantilevered beams with varied bending stiffness,
length, mass and carrying concentrated end mass under periodic axial motion at
its fixed end. Saito and Koizumi [5] examined the parametric resonance of a
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horizontal simply-supported beam with a concentrated mass at one end and
subjected to periodic axial motion at the other end. Buffinton and Kane [6] studied
the parametric instability of a beam periodically moving between two fixed simply
supported points. Elmaraghy and Tabarrok [7] investigated the instability of a
beam with encastré ends subjected to an axially periodic acceleration at one end.

The second category is the instability problem of columns or beams subjected
to a given periodic axial load or tangential load. Evensen and Evan-Iwanowski
[8] evaluated analytically and experimentally the principal resonance of a simply
supported column under axially periodic loading at one end. Bolotin [9] observed
experimentally the principal regions of instability of various columns under axial
or tangential periodic loading at one end. Iwatsubo et al. [10] developed a
numerical simulation procedure to find the principal regions of dynamic instability
of a cantilevered column subjected to an axial and tangential periodic end loading.
Subsequently, Iwatsubo and coworkers [11, 12] investigated numerically the simple
and combination resonances of a periodically time-varying continuous system;
they applied the method to solve the problems of cantilevered, simply supported,
clamped–clamped, and clamped–simply supported columns under axial or
tangential periodic loads at one end of the column. Nayfeh and Mook [2] used
the perturbation method to solve the problem of a cantilevered column subjected
to a periodically excited tangential force at the free end of the column. Sato et al.
[13] examined the instability behavior of a simply supported horizontal beam
carrying a concentrated mass under axial periodic load at one end; they discussed
the effect caused by the weight and position of the concentrated mass on the
instability of beams. Chen and Yeh [14] investigated a cantilevered column
subjected to periodic loads in varying direction of the tangency coefficient at the
free end of the column.

Although many studies have concentrated on the problem of the second
category, little information is available on the load applied on the more general
column. In this work, a general formula used to describe the regions of the simple
and combination resonances of a column under periodic load in varying directions
of the tangency coefficient at any axial position has been developed. The column
may have non-uniform cross-sections, non-homogeneous materials, or various
supported conditions. The advantage of this method is that the instability regions
of a general column can be easily determined from its natural frequencies and
mode shapes.

2. THE PROBLEM

As shown in Figure 1, a column is subjected to a periodic external force,
f(t)= f0 cos vt, at an arbitrary point P on the neutral axis of the column in the
direction of tangency coefficient. The neutral axis of the column is originally
straight. The cross-section and material properties of the column are symmetric
about the x-z plane and may vary along the length of the column. The column
has length L, mass M, mass per unit length r(x), and bending rigidity E(x)I(x).
At an arbitrary time t, the point P moves to point P'. The deflections in the x and
y directions are u(x, t) and v(x, t), respectively. The direction of the external force,
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Figure 1. Parametric excitation of a general column.

i.e., the direction of the tangency coefficient, was obtained by multiplying the slope
of point P', v'(x1, t), by a tangency coefficient a as av'(x1, t). The fixed supporting
point of the column is point O. The x co-ordinates of point O and point P are
x0 and x1 respectively. In this study, the following assumptions are made: (1) The
neutral axis of the column is inextensible; (2) Only small deflections in the x and
y directions are considered; (3) The gravitational effects are neglected; (4) The
damping effects are neglected.

3. PARAMETRIC EXCITATION OF A GENERAL COLUMN

For the general column, as shown in Figure 1, the free vibration equation of
the column in the transverse direction is

12/1x2(E(x)I(x) 12v/1x2)+ r(x) 12v/1t2 =0. (1)

Let the natural frequencies of the column be vn and the corresponding mode shape
functions fn (x). The transverse deflection v(x, t) can be expressed in terms of the
mode shapes fn (x) and the corresponding modal deflection components Vn (t) as

v(x, t)= s
a

n

fn (x)Vn (t). (2)

Figure 2. Parametric excitation of a cantilevered column. l1 =1·8751040; l2 =4·6940910;
l3 =7·8547575; l4 =10·995541; v̄n = l2

n /l2
1 ; fn (h)=z1/rL {cosh (lnh)− cos (lnh)− kn

[sinh (lnh)− sin (ln )]}, where kn =[cosh (ln )+ cos (ln )]/[sinh (ln )+ sin (ln )].
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Figure 3. Instability bandwidth parameter, Gnm , of a cantilevered column.
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For convenience, the mode shape functions fn (x) are chosen to be a set of
orthonormal functions as fL

0 r(x)fn (x)fm (x) dx= dnm . The governing equation of
the free transverse vibration of the column can be expressed by modal deflection
components Vn (t) as

V� n (t)+v2
nVn (t)=0. (3)

Bt assuming an inextensional neutral axis and small deflections in the x and y
directions, the horizontal displacement of the loading point P, u(x1, t), can be
expressed approximately by the transverse displacement v(x, t) as

u(x1, t)=−1
2 g

x1

x0

v'2(x, t) dx, (4)

where x0 and x1 are the x co-ordinates of fixed supporting point O and loading
point P, respectively. The modal excitation force Qn induced by the external load
f(t) can be obtained from virtual work as in Chen and Yeh [14]

Qn =−f0 cos vt s
m $g

x1

x0

f'n (x)f'm (x) dx− afn (x1)f'm (x1)%Vm (t). (5)

The governing equation of the forced vibration of the column system, as shown
in Figure 1, can be expressed as

V� n (t)+v2
nVn (t)=Qn , n=1, 2, 3, . . . , (6)

Figure 4. Instability bandwidth parameter, Gnm , of a cantilevered column versus tangency
coefficient; a: (a) h1 =1·0; ——, G11; ----, G22; –·–·–, G33; –· · ·–, G44: (b) As for Figure 4(a)
except h1 =0·8: (c) h1 =1·0; ——, G12; ----, G13; · · · · , G14; —·—, G23; –·–· , G24; –· · ·–, G34: (d) As
for Figure 4(c) except for h1 =0·8.
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Figure 5. Instability bandwidth parameter, Gnm , of a cantilevered column versus loading position,
h1: (a, d), a=1·0; (b, e) a=0·5; (c, f) a=0·0. Key: (a, b, c) as for Figure 4(a); (d, e, f) as for Figure
4(c).

or

V� n (t)+v2
nVn (t)+ f0 cos vt s

m $g
x1

x0

f'n (x)f'm (x) dx− afn (x1)f'm (x1)%Vm (t)=0.

(7)

The non-dimensionalized variables used are: t=v1t, time; h= x/L, general
co-ordinate; h0 = x0/L, the co-ordinate of fixed supporting point O; h1 = x1/L, the
co-ordinate of loading point P; v̄n =vn /v1 n=1, 2, 3, . . . , the natural
frequencies; v̄=v/v1, the excitation frequency; e= f0/2MLv2

1 , the amplitude of
the excitation force.

Equation (7) can be rewritten in non-dimensionalized form as

V� n (t)+ v̄2
nVn (t)+2e cos (v̄t) s

a

m

fnmVm (t)=0, n=1, 2, 3, . . . , (8)
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where

fnm =M$g
h1

h0

f'n (h)f'm (h) dh− afn (h1)f'm (h1)%, n, m=1, 2, 3, . . . , (9)

are the parametric excitation coefficients which are functions of the normalized
natural mode shape fn (h), derivatives of mode shape f'n (h), f'm (h), mass of the
column M, the tangency coefficient a, the co-ordinates of the fixed supporting
point, h0, and the loading point, h1.

Equation (8) is a standard Mathieu’s equation with multiple degrees of freedom
used to express the dynamic behavior of a column subjected to a periodic load
at an arbitrary point on the axis of column in the direction of the tangency
coefficient. Once the coefficients fnm are obtained, the instability bandwidth of
simple and combination resonances of equation (8) can be determined by using

Figure 6. Parametric instability regions of a cantilevered column for various tangency coefficients,
a, and loading position, h1: (a) h1 =1·0, a=1·0; (b) h1 =1·0, a=0·0; (c) h1 =0·7, a=0·0: Key: ——,
present; ----, Nayfeh and Mook [2]; - - -, Iwatsubo et al. [12].
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Figure 7. Parametric excitation of a simply supported column. ln = np; v̄n = l2
n /l2

1 ;
fn (h)=z2/rL sin (lnh).

the amplitude of the excitation force e, the natural frequencies of the column v̄n ,
v̄m , and the instability bandwidth parameter [14]

Gnm =sign (fnm fmn )[=fnm fmn =/v̄nv̄m ]1/2, (10)

as:
(1) When n=m, a simple resonance occurs in the region centered at v̄=2v̄n

with bandwidth 2eGnn .
(2) When n$m and Gnm q 0, a combination resonance of the sum type occurs

in the region centered at v̄= v̄n + v̄m with bandwidth 2eGnm .
(3) When n$m, v̄n q v̄m , and Gnm Q 0, a combination resonance of difference

type occurs in the region centered at v̄= v̄n − v̄m with bandwidth 2eGnm .
For a general system, as shown in Figure 1, the natural frequencies of the

column v̄n and the corresponding mode shape functions fn (h) can be found by
using an analytical method, numerical method, or experimental method. Once the
natural frequencies and mode shapes are given, the parametric excitation
coefficient fnm in equation (9) and the instability bandwidth parameter Gnm in
equation (10) can be calculated to determine the instability regions. The
procedures of deriving and solving the dynamic equation of the system can be
bypassed when evaluating all the regions of simple and combination resonances.

In addition, from equations (9) and (10), the system has the following
characteristics:

(1) When the tangency coefficient a=0, i. e., the direction of the periodic load
is parallel to the undeformed horizontal axis, all of the parametric excitation
coefficients fnm are symmetric; therefore, all of the instability bandwidth parameters
Gnm are greater than or equal to zero. Physically, all of the combination resonances,
if occurring, will be of the sum type.

(2) When a=0 the parametric excitation coefficients fnn in equation (9) become

fnn =M g
h1

h0

f'2n (h) dh, n=1, 2, 3, . . . , (11)

in which h0 and h1 are the co-ordinates of the fixed supporting point O and the
loading point P respectively, and the integrand f'2n (h) is greater than or equal to
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zero. Thus, the values of fnn and Gnn increase as the distance between point P and
point O increases. Physically, the instability bandwidth of simple resonance 2eGnn

increases with increase of the distance between point P and point O as the
amplitude of excitation e is kept constant.

(3) When the loading point P is located at a supporting point so that its
transverse deflection v(h1, t) or slope v'(h1, t) vanishes, from equation (9), one has

fnm =M g
h1

h0

f'n (h)f'm (h) dh, n, m=1, 2, 3, . . . . (12)

Figure 8. Instability bandwidth parameter, Gnm , of a simply supported column.



.-.   .-. 674

Figure 9. Instability bandwidth parameter, Gnm , of a simply supported column versus tangency
coefficient, a, (h1 =0·5). Key: (a) as for Figure 4(a); (b) as for Figure 4(c).

Therefore, all of the parametric excitation coefficients fnm are symmetric and are
not functions of the tangency coefficient a; all of the instability bandwidth
parameters Gnm are greater than or equal to zero. Physically, all of the combination
resonances, if occurring, will be of the sum type and the instability bandwidth
2eGnm are independent of the tangency coefficient a.

Figure 10. Instability bandwidth parameter, Gnm , of a simply supported column versus loading
position, h1. a values and key identical to Figure 5.
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Figure 11. Parametric instability regions of a simply supported column for various tangency
coefficient, a, and loading position, h1: (a) h1 =1·0, a arbitrary; (b) h1 =0·67, a=0·5; (c) h1 =0·5,
a=0·5. Key: ——, present; ----, Iwatsubo et al. [12].

(4) When the loading point P is located at the node point of the nth mode shape,
(fn (h1)=0), or at the zero-slope point of the nth mode shape, (f'n (h1)=0),
from equation (9), fnn is independent of the tangency coefficient a; thus the
instability parameter Gnn of simple resonance is not a function of the tangency
coefficient a.

(5) When the node points of the nth and the mth mode shapes or the zero-slope
points of the nth and the mth mode shapes overlap and the loading point is located
at that point, from equation (9), fnm is independent of the tangency coefficient a;
thus the instability parameter Gnm of combination resonance is independent of the
tangency coefficient a and Gnm is greater than or equal to zero.
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4. PHYSICAL EXPLANATIONS OF PARAMETRIC INSTABILITY

The instability behavior obtained above is explained physically as follows:

4.1.  

Consider the oscillation of the nth mode of equation (8) as

V� n (t)+ v̄2
nVn (t)=−2e cos (v̄t)fnnVn (t)+RT, (13)

in which RT represents the regular terms that produce no resonant conditions.
Multiplying equation (13) by V� n and neglecting the regular terms (RT), one obtains
the energy form of equation (13)

d/dt(1
2V�

2
n + 1

2v̄
2
nV2

n )=−2e cos (v̄t)fnnVnV� n . (14)

The term on the left side, d/dt(1
2V�

2
n + 1

2v̄
2
nV2

n ), represents the time rate change of
the total energy of the nth mode and the term on the right side,
−2e cos (v̄t)fnnVnV� n , represents the power done on the nth mode by the
generalized force −2e cos (v̄t)fnnVn . As e approaches zero, the power done by the
generalized force is small, and thus in a short time interval the oscillation of Vn (t)
can be expressed approximately as

Vn (t)3V� n cos (v̄nt+ un ), (15)

where V� n , un are the amplitude and phase of Vn (t) respectively. When the
excitation frequency v̄ approaches twice the natural frequency 2v̄n , the power
input of the generalized force becomes

−2efnnVnV� n cos (v̄t)3 efnnV� 2
nv̄n cos (2v̄nt) sin (2v̄nt+2un )

= 1
2efnnV� 2

nv̄n [sin (4v̄nt+2un )+ sin (2un )]. (16)

The average power of the first term on the right side of equation (16),
1
2efnnV� 2

nv̄n sin (4v̄nt+2un ), is equal to zero, and the average power of the second
term on the right side, 1

2efnnV� 2
nv̄n sin (2un ), is constant. When the second term is

positive, the power input to the nth mode is positive and the total energy of the
nth mode increases continuously. Therefore, the system becomes unstable when
the excitation frequency v̄ is near 2v̄n .

Figure 12. Parametric excitation of a clamped–simply supported column. l1 =3·92660;
l2 =7·06859; l3 =10·21018; l4 =13·135177; v̄n = l2

n /l2
1 ; fn (h)=z2/rL[sin (lnh)− kn sinh (lnh)]

where kn =sin (ln )/sinh (ln ).
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Figure 13. Instability bandwidth parameter, Gnm , of a clamped–simply supported column.
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4.2.      

Consider the oscillation of nth and mth modes of equation (8) as

V� n (t)+ v̄2
nVn (t)=−2e cos (v̄t)fnmVm (t)+RT,

V� m (t)+ v̄2
mVm (t)=−2e cos (v̄t)fmnVn (t)+RT, (17)

in which RT represents the regular terms that produce no resonant conditions.
Multiplying each equation of equation (17) by V� n and V� m respectively, and
neglecting the regular terms (RT), one obtains the energy form of equation (17)

d/dt(1
2V�

2
n + 1

2v̄
2
nV2

n )=−2e cos (v̄t)fnmVmV� n ,

d/dt(1
2V�

2
m + 1

2v̄
2
mV2

m )=−2e cos (v̄t)fmnVnV� m . (18)

The term on the left side of each equation represents the time rate change of the
total energy of the nth and mth modes respectively; the term on the right side of
each equation represents the power input to the nth and mth modes by the

Figure 14. Instability bandwidth parameter, Gnm , of a clamped–simply supported column versus
loading position h1. a values and key identical to Figure 5.
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Figure 15. Parametric instability regions of a clamped–simply supported column for various
tangency coefficient, a, and loading position, h1: (a) h1 =1·0, a arbitrary; (b) h1 =0·65, a=0·5; (c)
h1 =0·5, a=0·5. Key as for Figure 11.

generalized forces, −2e cos (v̄t)fnmVm and −2e cos (v̄t)fmnVn , respectively. As e
approaches zero, the power from the generalized forces is small, and thus in a short
time interval the oscillation of Vn (t) and Vm (t) can be expressed approximately
as

Vn (t)3V� n cos (v̄nt+ un ), Vm (t)3V�m cos (v̄mt+ um ) (19)

When the excitation frequency v̄ approaches the summation of the natural
frequencies, v̄n + v̄m , the power of the generalized forces becomes

−2efnmVmV� n cos (v̄t)

3efnmV� nV�mv̄n cos [(v̄n + v̄m )t]{sin [(v̄n + v̄m )t+(un + um )]

+ sin [(v̄n − v̄m )t+(un − um )]}

= 1
2efnmV� nV�mv̄n{sin [2(v̄n + v̄m )t+(un + um )]

+ sin [2v̄nt+(un − um )]+ sin [2v̄mt−(un − um )]+ sin (un + um )}, (20)
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−2efmnVnV� m cos (v̄t)

3efmnV� nV�mv̄m cos [(v̄n + v̄m )t]{sin [(v̄n + v̄m )t+(un + um )]

−sin [(v̄n − v̄m )t+(un − um )]}

=1
2efmnV� nV�mv̄m{sin [2(v̄n + v̄m )t+(un + um )]

+sin [2v̄nt+(un − um )]+ sin [2v̄mt−(un − um )]+ sin (un + um )}. (21)

The average power of the first three terms in the brace of the right side of equations
(20) and (21) is equal to zero. When fnm and fmn have the same sign, the power of
the last term in the brace of the right side of equations (20) and (21),
1
2efnmV� nV�mv̄n sin (un + um ) and 1

2efmnV� nV�mv̄m sin (un + um ), must have the same sign,
too. When they are positive, the power input to the nth and mth modes is positive
and the total energy of the nth and mth modes increases continuously. Therefore,
the system becomes unstable when the excitation frequency v̄ is near v̄n +vm ;
however, when fnm and fmn have the opposite signs, this conclusion does not hold.

4.3.      

A similar procedure as above indicates that when fnm and fmn have opposite signs
and the excitation frequency v̄ is near v̄n − v̄m , v̄n q v̄m , the system becomes
unstable.

5. RESULTS AND DISCUSSION

The columns with four different supporting conditions are investigated by
applying the general formula developed in the previous section to demonstrate the
instability regions of simple and combination resonances. For simplicity, the
columns were chosen to have uniform cross-section with length L, mass M, mass
per unit length r, bending rigidity EI, and fixed supporting point O. The columns
were subjected to a sinusoidal periodic load f(t)= f0 cos vt at an arbitrary loading
point P in the direction of the tangency coefficient a. The natural frequencies v̄n

and corresponding normalized mode shape functions fn (h) of each column are
obtained first from equation (1) with corresponding boundary conditions.

Figure 16. Parametric excitation of a clamped–clamped column. l1 =4·73004; l2 =7·85321;
l3 =10·99561; l4 =14·13717; v̄n = l2

n /l2
1 ; fn =z1/rL{cosh (lnh)− cos(lnh )− kn [sinh (lnh)

− sin (lnh)]}, where kn =[cosh (ln )− cos (ln )]/[sinh (ln )− sin (ln )].
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Figure 17. Instability bandwidth parameter, Gnm , of a clamped–clamped column.
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Substituting v̄n and corresponding fn (h) into equations (9) and (10), the instability
bandwidth parameters Gnm with varying values of the tangency coefficient a at the
non-dimensionalized loading position h1 were found. The results of the instability
bandwidth parameters Gnm are presented. Several Gnm curves with varying values
of a or h1 and several instability diagrams with specified a and h1 are plotted. The
instability bandwidth parameters Gnm , n, m=1, 2, 3, and 4, are presented without
loss of generality.

5.1.  :  

A cantilevered column under periodic load is shown in Figure 2, in which the
non-dimensionlized natural frequencies v̄n and normalized mode shape functions
fn (h) are also shown. The instability bandwidth parameters Gnm , n, m=1, 2, 3,
and 4, varying with the tangency coefficient a and the loading position h1, are
partly shown in Figures 3(a–j), respectively. As one can see, each Gnm surface has
many wrinkles, and the values of Gnm vary rapidly with respect to a and h1 in all
a–h1 planes. In Figures 4(a–d) the sectional views of Gnn and Gnm curves are shown
for the loading position h1 =1·0 and 0·8 respectively. In Figures 5(a–f) the
sectional views of Gnn and Gnm curves are shown for the tangency coefficient
a=1·0, 0·5, and 0·0 respectively. In Figures 4 and 5, all the Gnm curves are different
as the loading point or the tangency coefficient are varied. The present results
shown in Figure 4(a, c) are the same as those obtained by Chen and Yeh [14] for
a cantilevered column under periodic loads in the direction of the tangency
coefficient for h1 =1·0. In Figures 5(c, f) the direction of the periodic load is
parallel to the undeformed horizontal axis (the tangency coefficient a=0). The
value of each Gnn for simple resonance increases as the distance between the fixed

Figure 18. Instability bandwidth parameter, Gnm , of a clamped–clamped column versus tangency
coefficient, a. (a) h1 =1·0, key as for Figure 4(a); (b) h1 =0·5, key as for Figure 4(a); (c) h1 =1·0,
key as for Figure 4(c); (d) h1 =0·5, key as for Figure 4(c).
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Figure 19. Instability bandwidth parameter, Gnm , of clamped–clamped column versus loading
position, h1. (a, d), a=1·0; (b, e), a=0·5; (c, f), a=0·0. Key: (a, b, c) as for Figure 4(a); (d, e, f)
as for Figure 4(c).

supporting point and the loading point increases; the instability parameters Gnm

for combination resonance are always greater than or equal to zero. For specific
tangency coefficient a and loading position h1, the instability diagram can be
plotted by using the values of instability bandwidth parameters Gnm , the natural
frequencies v̄n , v̄m and the amplitude of excitation e. Figures 6(a–c) show the
instability diagram for h1 =1 and a=f, h1 =1 and a=0, as well as h1 =0·7 and
a=0, respectively. The instability regions are quite different with varying h1 or
a. Figure 6(a) shows that the present results have no discernible difference
from those of Iwatsubo et al. [12] and Nayfeh and Mook [2] on the same ordinate
scale.

5.2.  :   

A simply supported column under periodic load is shown in Figure 7. The
instability bandwidth parameters Gnm n, m=1, 2, 3, and 4 varying with the
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tangency coefficient a and the loading position h1 are partly shown in Figures
8(a–j), respectively. It is noted that

(1) All the odd mode shape functions, fn (h)=z2/rL sin nph are symmetric
about the center point h=0·5, and the even mode shape functions skewsymmetric
about h=0·5. Moreover, all the derivatives of the mode shape functions f'n (h) are
orthogonal in the interval of [0, 1]. Recalling equation (9), when the tangency
coefficient a is constant and n$m, the parametric excitation coefficient fnm (h1)
becomes

fnm (h1)=M$g
h1

0

f'n (h)f'm (h) dh− afn (h1)f'm (h1)%
=M$−g

1

h1

f'n (h)f'm (h) dh− afn (h1)f'm (h1)%

=

−M$g
1− h1

0

f'n (h)f'm (h) dh− afn (1− h1)f'm (1− h1)%,
+M$g

1− h1

0

f'n (h)f'm (h) dh− afn (1− h1)f'm (1− h1)%,
(n+m) even,

(n+m) odd,

g
G

G

G

G

F

f

h
G

G

G

G

J

j

=6−fnm (1− h1),
+fnm (1− h1),

(n+m) even,
(n+m) odd.7 (22)

Therefore, the parametric excitation coefficient fnm (h1), n$m, is symmetric for
odd n+m and skewsymmetric for even n+m about h1 =0·5. From equation (10),
all of the combination resonance instability parameters Gnm are symmetric to the
plane of h1 =0·5, as shown in Figures 8(e–j).

(2) When the loading point is located at the right end of the column, h1 =1,
this point is constrained by the supported condition so that all of the mode shape
functions fn (h) vanish at h1 =1. Moreover, all of the derivatives of the mode shape
functions f'n (h) are orthogonal in the interval of [0, 1], then

fnm =M$g
1

0

f'n (h)f'm (h) dh− afn (1)f'm (1)%
=M$g

1

0

f'n (h)f'm (h) dh%= n2p2dnm . (23)

Therefore, all of the combination resonance instability parameters Gnm , n$m
vanish and all of the simple resonance instability parameters Gnn have the same
value of p2.
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(3) When the position of loading point is located at the midpoint of the column,
h1 =0·5, the values of mode shape functions fn (h1) are zero for n=2, 4, 6, . . . and
the derivatives of mode shape functions f'n (h1) are zero for n=1, 3, 5, . . . . The
parametric excitation coefficient fnn (h1) becomes

fnn =M$g
0·5

0

f'2n (h) dh− afn (0·5)f'n (0·5)%=M$g
0·5

0

f'2n (h) dh%=0·5n2p2,

(24)

Figure 20. Parametric instability regions of a clamped–clamped column for various tangency
coefficients, a, and loading position. h1. (a) h1 =1·0, a arbitrary; (b) h1 =0·6, a=1·0; (c) h1 =0·4,
a=1·0. Key as for Figure 11.
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and when n$m and (n+m) even, fnm (h) becomes

fnm =M$g
0·5

0

f'n (h)f'm (h) dh− afn (0·5)f'm (0·5)%=M$g
0·5

0

f'n (h)f'm (h) dh%
=2n2p2$g

0·5

0

cos (nph) cos (mph) dh%=0. (25)

Thus, all of the simple resonance instability parameters Gnn have the same value
0·5p2 and the combination resonance instability parameters Gnm vanish when
h1 =0·5 and (n+m) even.

(4) When the tangency coefficient a=0·5 and the loading point is located at
h1 the parametric excitation coefficients fnn become

fnn =M$g
h1

0

f'2n (h) dh−0·5fn (h1)f'n (h1)%= n2p2h1. (26)

From equation (10), all the simple resonance instability parameters Gnn overlap
and became a straight line segment with the same value p2h1.

Figures 9(a, b) show Gnm curves varying with the tangency coefficient a for the
loading position h1 =0·5; all of the simple resonance instability parameters Gnn

have the same value 0·5p2 and the combination resonance instability parameters
G13 and G24 vanish. Figures 10(a–f) show that Gnm values vary with the loading
position h1 for the tangency coefficient a=1·0, 0·5, and 0·0, respectively. In Figure
10 all of the combination resonance instability parameters Gnm are symmetric about
h1 =0·5. When the loading position is located at the right end of the column,
h1 =1, all the simple resonance instability parameters Gnn have the same value p2

for all values of the tangency coefficient and all the combination resonances
instability parameters Gnm vanish. When a=0·5, all of the simple resonance
instability parameters Gnn overlap and form a straight line of p2h1 as shown in
Figure 10(b). Figures 11(a–c) show the instability diagram for h1 =1 with arbitrary
a, h1 =0·67 with a=0·5, and h1 =0·5 with a=0·5, respectively. Figure 11(a)
shows that all of the combination resonances vanish and the present results have
no discernible difference from the results obtained by Iwatsubo et al. [12] on the
same ordinate scale. When the loading point is not located at the end of the
column, the combination resonances may occur as shown in Figures 11(b) and
11(c).

5.3.  :  - 

A clamped–simply supported column under periodic load is shown in Figure 12.
The instability bandwidth parameters Gnm , n, m=1, 2, 3, and 4, varying with the
tangency coefficient a and the loading position h1 are shown in Figures 13(a–j)
respectively. The Gnm surfaces vary more rapidly with respect to a and h1 in all
plots.
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In Figures 14(a–f), the Gnm curves are shown to vary with the loading position
for the tangency coefficient a=1·0, 0·5, and 0·0 respectively. When a=1·0, all
the combination resonance instability parameters Gnm are almost greater than or
equal to zero as shown in Figures 14(d). When a=0·5, all of the simple resonance
instability parameters Gnn almost overlap and form a straight line in the range of
0E h1 E 0·6 as shown in Figure 14(b). Figures 15(a–c) show the instability
diagram for h1 =1 with arbitrary a, h1 =0·65 with a=0·5, and h1 =0·5 with
a=0·5, respectively. The present results, in Figure 15(a) can be seen to be close
to those of Iwatsubo et al. [12] for the end loading case. The instability bandwidth
regions become different when changing the loading condition h1 or the tangency
coefficient a.

5.4.  : – 

Figure 16 shows a clamped–clamped column under periodic load. The
instability bandwidth parameters Gnm , n, m=1, 2, 3, and 4, varying with the
tangency coefficient a and the loading position h1 are shown in Figures 17(a–j),
respectively. It is noted that

(1) All the odd mode shape functions fn (h) are symmetric about h=0·5 and
all the even mode shape functions skewsymmetric about h=0·5. The derivatives
of the mode shape functions f'n (h), f'm (h) are orthogonal to each other in the
interval of [0, 1] for (n+m) odd. From equation (9) , when n$m, (n+m) odd
and constant a, the parametric excitation coefficients fnm (h1) become

fnm(h1)=M$g
h1

0

f'n (h)f'm (h) dh− afn (h1)f'm (h1)%
=M$−g

1

h1

f'n (h)f'm (h) dh− afn (h1)f'm (h1)%
=M$g

1− h1

0

f'n (h)f'm (h) dh− afn (1− h1)f'm (1− h1)%
= fnm (1− h1). (27)

that is, the parametric excitation coefficients fnm (h1) are symmetric about h1 =0·5.
From equation (10), the combination resonance instability parameters Gnm are
symmetric to the plane of h1 =0·5 for odd (n+m), as shown in Figures 17(e),
17(g), 17(h), and 17(j).

(2) When the loading point is located at the right clamped end of the column,
h1 =1, all the mode shape functions fn (h) and its derivatives f'n (h) vanish.
Moreover, the derivatives of the mode shape functions f'n (h), f'm (h) are orthogonal
to each other in the interval of [0, 1] for n$m and odd (n+m), i.e.,

fnm =M$g
1

0

f'n (h)f'm (h) dh− afn (1)f'm (1)%=M$g
1

0

f'n (h)f'm (h) dh%=0.

(28)



.-.   .-. 688

Therefore, when h=1, the combination resonance instability parameters Gnm

vanish for odd (n+m).
(3) When the loading point is located at the midpoint of the column, i.e.,

h1 =0·5. The mode shape functions fn (h1) are zero for n=2, 4, 6, . . . and the
derivatives of the mode shape functions f'n (h1) are zero for n=1, 3, 5, . . . . The
parametric excitation coefficient fnn (h) becomes

fnn =M$g
0·5

0

f'2n (h) dh− afn (0·5)f'n (0·5)%=M$g
0·5

0

f'2n (h) dh%. (29)

Furthermore, when n$m and even (n+m), fnm (h) becomes

fnm =M$g
0·5

0

f'n (h)f'm (h) dh− afn (0·5)f'm (0·5)%=M$g
0·5

0

f'n (h)f'm (h) dh%.
(30)

Thus, all of the simple resonance instability parameters Gnn and the combination
resonance instability parameters Gnm with even (n+m) are independent of the
tangency coefficient.

In Figures 18(a–d), the Gnm curves varying with the tangency coefficient are
shown for the loading position h1 =1·0 and h1 =0·5 respectively. In Figures
18(a, c), all the simple and combination resonance instability parameters Gnm are
independent of the tangency coefficient; the combination resonance instability
parameters G12, G14, G23 and G34 vanish. In Figure 18(b, d), all the simple resonance
instability parameters Gnn and the combination resonance instability parameters
G13 and G24 are independent of the tangency coefficient. Figure 19 shows the Gnm

curves for the tangency coefficient a=1·0, 0·5, and 0·0 respectively. The
combination resonance instability parameters G12, G14, G23 and G34 are symmetric
about h1 =0·5. Figure 20 shows the instability diagrams for h1 =1 with arbitrary
a, h1 =0·6 with a=1·0, and h1 =0·4 with a=1·0, respectively. In Figure 20(a)
the conbination resonances G12, G14, G23 and G34 vanish and the present instability
bandwidths can be seen to have no discernible difference from those of Iwatsubo
et al. [12] for the end loading case. When the loading point is not located at the
end of the column, the combination resonances may occur as shown in Figures
20(b, c).

6. CONCLUSIONS

The parametrically excited instability behavior of a general column has been
investigated analytically. The column may have non-uniform cross-section,
non-homogeneous material, or various supported conditions, and is subjected to
a periodic load in varying direction of the tangency coefficient at an arbitrary axial
position on the column. The instability bandwidths of simple and combination
resonances can be determined by a general formula derived in this paper. In the
formula, the instability bandwidth parameters Gnm are functions of the natural
frequencies, the normalized natural mode shapes of the column, the length and
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mass of the column, the fixed supporting position, the loading position, and the
tangency coefficient. Physical explanations have been given for the behavior of
parametric resonances and the following conclusions can be drawn.

(1) When the tangency coefficient a=0, for any fixed supporting position and
loading position, all of the combination resonances, if occurring, are of the sum
type.

(2) With a=0 and constant excitation amplitude parameter e, the bandwidth
of simple resonance increases with increasing distance between the fixed
supporting point and loading point.

(3) When the loading point is at a constrained point where the transverse
deflection or the tangent slope of the column at this point is zero, the instability
behavior of the column is independent of the tangency coefficient, and all the
combination resonances, if occurring, are of the sum type.
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